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Abstract. In the case of the complex plane, it is known that there exists a finite set

of rational numbers containing all possible growth orders of solutions of

f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f = 0

with polynomial coefficients. In the present paper, it is shown by an example that a
unit disc counterpart of such finite set does not contain all possible T - and M -orders

of solutions, with respect to Nevanlinna characteristic and maximum modulus, if the
coefficients are analytic functions belonging either to weighted Bergman spaces or

to weighted Hardy spaces. In contrast to a finite set, possible intervals for T - and

M -orders are introduced to give detailed information about the growth of solutions.
Finally, these findings yield sharp lower bounds for the sums of T - and M -orders of

functions in the solution bases.

1. Introduction

This research is a continuation of recent activity in the field of complex differential
equations. In particular, the present paper concerns linear differential equations of the
type

(1.1) f (k) + ak−1(z)f (k−1) + · · ·+ a1(z)f ′ + a0(z)f = 0,

where the coefficients a0(z), . . . , ak−1(z) are analytic functions in the unit disc D := {z :
|z| < 1} of the complex plane C. A variety of publications in the existing literature
illustrates that the connection between the growth of coefficient functions and the growth
of solutions is relatively well understood. On the one hand, the growth estimates in [8]
have been proven to be instrumental tools in estimating the growth of solutions when the
growth of coefficients is known. On the other hand, proofs of the converse direction have
taken advantage of the method of order reduction as well as different types of logarithmic
derivative estimates.

For an analytic function in D, it is known that T - and M -orders of growth, with
respect to Nevanlinna characteristic and maximum modulus, are not equal in general.
This is in contrast to the corresponding case in C. Hence, there are two distinct cases
in D to work with. First, if the growth of solutions is measured by using the T -order
then it is natural to express the other growth aspects by means of integration as well. In
particular, it is reasonable to consider coefficient functions belonging to some weighted
Bergman spaces, and use integrated estimates for logarithmic derivatives [12]. Second, if
the growth of solutions is measured by using the M -order then it is natural to express
the other growth aspects by means of the maximum modulus function. In particular, it
is sensible to restrict the growth of the maximum modulus of coefficient functions, which
leads to weighted Hardy spaces, and work with estimates for the maximum modulus of
logarithmic derivatives involving exceptional sets [4].

The main focus of this paper is in improving the lower bounds for the growth of
solutions of (1.1) given in [4, 12], and explore some consequences, which are motivated by
the following observations.

By the classical results in C making use of Newton-Puiseux diagram, there is a finite set
containing the possible growth orders of solutions of (1.1) assuming that coefficients are
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polynomials. In particular, Gundersen-Steinbart-Wang showed that this finite set consists
of rational numbers obtained from simple arithmetic with the degrees of the polynomial
coefficients in (1.1) [6, Theorem 1]. Their proof relies on classical Wiman-Valiron theory
in C. Even though a recent unit disc counterpart of Wiman-Valiron theory [5] has been
successfully applied to differential equations, the possible orders of solutions of (1.1) in D
have been obtained only by assuming that coefficients are α-polynomial regular. These
α-polynomial regular functions have similar growth properties than polynomials in the
sense that maximal growth is attained in every direction. However, they appear to be
only a relatively small subset of the Korenblum space, which characterizes finite order
solutions of (1.1) in D [7, Theorem 6.1]. Note that in the case of C, all solutions of (1.1)
are of finite order if and only if coefficients are polynomials [15, Satz 1].

In the present paper, it is shown by an example that a unit disc counterpart of the
finite set constructed by Gundersen-Steinbart-Wang does not contain all possible orders of
solutions of (1.1), provided that the coefficients belong either to weighted Bergman spaces
or to weighted Hardy spaces. In contrast to a finite set, we introduce possible intervals
for T -orders and M -orders, giving detailed information about the growth of solutions.
Finally, these findings are applied to estimate the sums of T - and M -orders of functions
in the solution bases of (1.1) from below.

2. Results and motivation

The results concerning T - and M -orders of solutions of (1.1) are given respectively
in Sections 2.1-2.2 and 2.3-2.4. Due to the similarities of the assertions, we omit the
proofs of results regarding M -orders of solutions of (1.1), excluding the sketched proof of
Theorem 5 in Section 7.

Let M(D) and H(D) denote the sets of all meromorphic and analytic functions in D.
For simplicity, we write α+ := max {α, 0} for any α ∈ R, |f(z)| . |g(z)| if there exists a
constant C > 0 independent of z such that |f(z)| ≤ C |g(z)|, and f(z) ∼ g(z) if there exist
constants C1 > 0 and C2 > 0 independent of z such that C1|g(z)| ≤ |f(z)| ≤ C2|g(z)|.

2.1. Growth of solutions with respect to Nevanlinna characteristic. The T -order
of growth of f ∈M(D) is defined as

σT (f) := lim sup
r→1−

log+ T (r, f)

− log(1− r)
,

where T (r, f) is the Nevanlinna characteristic of f . For p > 0 and α > −1, the weighted
Bergman space Apα consists of those f ∈ H(D) for which

‖f‖Apα :=

(∫
D
|f(z)|p(1− |z|2)α dm(z)

) 1
p

<∞.

Functions of maximal growth in
⋂
q<α<∞Apα are distinguished by denoting f ∈ Apq , if

q = inf{α > −1: f ∈ Apα}.
If the growth of the coefficients is expressed by means of integration then it is natural

to consider the growth of solutions of (1.1) with respect to T -order.

Theorem A ([12, Theorems 1 and 2]). Suppose that aj ∈ A
1
k−j
αj , where αj ≥ 0 for

j = 0, . . . , k − 1, and denote αk := 0.

(i) Let 0 ≤ α < ∞. Then all solutions f of (1.1) satisfy σT (f) ≤ α if and only if
maxj=0,...,k−1 {αj} ≤ α.

(ii) All non-trivial solutions f of (1.1) satisfy

min
j=1,...,k

{
k(α0 − αj)

j
+ αj

}
≤ σT (f) ≤ max

j=0,...,k−1
{αj}.

(iii) If q ∈ {0, . . . , k − 1} is the smallest index for which αq = maxj=0,...,k−1{αj} then
each solution base of (1.1) contains at least k − q linearly independent solutions
f such that σT (f) = αq.
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The assumption aj ∈ A
1
k−j
αj in Theorem A(i) cannot be replaced by aj ∈ A

1
k−j
αj , see [9].

We refine Theorem A, and then further underscore its consequences.

Theorem 1. Suppose that aj ∈ A
1
k−j
αj , where αj ≥ −1 for j = 0, . . . , k − 1, and let

q ∈ {0, . . . , k−1} be the smallest index for which αq = maxj=0,...,k−1{αj}. If s ∈ {0, . . . , q}
then each solution base of (1.1) contains at least k − s linearly independent solutions f
such that

(2.1) min
j=s+1,...,k

{
(k − s)(αs − αj)

j − s
+ αj

}
≤ σT (f) ≤ α+

q ,

where αk := −1.

The case s = 0 clearly reduces to Theorem A(ii). If s = q then the condition αq =
maxj=0,...,k−1{αj} implies that

min
j=q+1,...,k

{
(k − q)(αq − αj)

j − q
+ αj

}
= min
j=q+1,...,k

{
(k − j)(αq − αj)

j − q
+ αq

}
= αq,

(2.2)

where the minimum is attained for j = k. Hence the assertion of Theorem 1 for s = q
is contained in Theorem A(iii). Our contribution is to extend the first inequality in (2.1)
for s ∈ {1, . . . , q − 1}. Theorem 1 is proved in Section 4, and the sharpness as well as the
special cases k = 2 and k = 3 are further discussed in Section 3.1.

Let q ∈ {0, . . . , k−1} be the smallest index for which αq = maxj=0,...,k−1{αj}. If αq ≤ 0
then all solutions in each solution base of (1.1) are of zero T -order by Theorem A(ii).
Suppose that αq > 0. In order to state the following corollaries of Theorem 1, we denote

(2.3) βT (s) := min
j=s+1,...,k

{
(k − s)(αs − αj)

j − s
+ αj

}
, s = 0, . . . , q,

where αk := −1. Moreover, we define

s? := min {s ∈ {0, . . . , q} : βT (s) > 0} .

Remark that βT (q) > 0, since (2.2) implies αq = βT (q).

Corollary 2. Suppose that aj ∈ A
1
k−j
αj , where αj ≥ −1 for j = 0, . . . , k − 1, and let

q ∈ {0, . . . , k−1} be the smallest index for which αq = maxj=0,...,k−1{αj} > 0. Then each
solution base of (1.1) admits at most s? ≤ q solutions f satisfying σT (f) < βT (s?). In
particular, there are at most s? ≤ q solutions f satisfying σT (f) = 0.

To estimate the quantity
∑k
j=1 σT (fj) by using Theorem 1, we set

γT (j) := max{βT (0), . . . , βT (j)}, j = 0, . . . , q.

Evidently γT (j) > 0 for j ∈ {s?, . . . , q}, and γT (j) ≤ 0 for j ∈ {0, . . . , s? − 1}.

Corollary 3. Suppose that aj ∈ A
1
k−j
αj , where αj ≥ −1 for j = 0, . . . , k − 1, and let

q ∈ {0, . . . , k − 1} be the smallest index for which αq = maxj=0,...,k−1{αj} > 0. Let

{f1, . . . , fk} be a solution base of (1.1). If q = 0 then
∑k
j=1 σT (fj) = kα0, while if q ≥ 1

then

(2.4) (k − q)αq +

q−1∑
j=s?

γT (j) ≤
k∑
j=1

σT (fj) ≤ kαq.

Note that the sum in (2.4) is considered to be empty, if s? = q.
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2.2. Gunderssen-Steinbart-Wang method for T -order. We proceed to state the
assertions of Theorem 1 and its corollaries by using a technique introduced in [6]. This
yields a natural way to define possible intervals for T -orders of solutions of (1.1). As a
consequence, we get a useful estimate following from Corollary 3.

Set δj := (αj + 1)(k− j) for all j = 0, . . . , k−1. Let s1 ∈ {0, . . . , k − 1} be the smallest
index satisfying αs1 = maxj=0,...,k−1 {αj} > 0, which is equivalent to

δs1
k − s1

= max
j=0,...,k−1

{
δj

k − j

}
> 1.

If s1 cannot be found then all solutions of (1.1) are of zero T -order by Theorem A(ii).
Otherwise, for a given sm, m ∈ N, let sm+1 ∈ {0, . . . , sm − 1} be the smallest index
satisfying

(2.5)
δsm+1 − δsm
sm − sm+1

= max
j=0,...,sm−1

{
δj − δsm
sm − j

}
> 1.

Eventually this process will stop, yielding a finite list of indices s1, . . . , sp such that p ≤ k
and s1 > s2 > · · · > sp ≥ 0. Further, set

(2.6) BT (t) :=
δst − δst−1

st−1 − st
− 1, t = 1, . . . , p,

where s0 := k and δk := 0. Due to resemblance between (2.6) and [6, Eq. (2.4)], it seems
plausible that the possible non-zero T -orders of solutions of (1.1) in the unit disc case
could be found among the numbers BT (t), where t = 1, . . . , p. However, Example 1 below
shows that this is not the case.

The following lemma allows us to view the results in Section 2.1 in a new perspective.
In particular, Lemma 4 emphasizes the connection between BT and γT .

Lemma 4. We have

(i) BT (1) > BT (2) > · · · > BT (p) > 0;
(ii) βT (st) = BT (t) for all t ∈ {1, . . . , p};
(iii) γT (q) = BT (1), γT (j) = BT (t) for all st ≤ j < st−1 and t ∈ {2, . . . , p}, and

γT (j) ≤ 0 for all j < sp. In particular, sp = s?.

By relying on Lemma 4, Theorem 1 and Corollary 2, we proceed to state possible

intervals for T -orders of functions in solution bases of (1.1) in the case aj ∈ A
1
k−j
αj , where

αj ≥ −1 for j = 0, . . . , k − 1. In fact, each solution base of (1.1) contains

(i) at least k − s1 solutions f satisfying σT (f) = BT (1);
(ii) at least k − st solutions f satisfying σT (f) ∈ [BT (t),BT (1)] for t = 2, . . . , p;
(iii) at most sp solutions f satisfying σT (f) ∈ [0,BT (sp)).

For the following application, let {f1, . . . , fk} be a solution base of (1.1). Knowing the
possible intervals for T -orders, we get

(2.7)

k∑
j=1

σT (fj) ≥ (k − s1)BT (1) + · · ·+ (sp−1 − sp)BT (p) + sp · 0 = δsp + sp − k.

In view of Lemma 4, the lower estimates in (2.4) and (2.7) are equal.
Finally, we point out a useful consequence of (2.7). If sp = 0 then δsp + sp = δ0. If

sp > 0 then (δ0 − δsp)/sp ≤ 1 by (2.5), and δsp + sp ≥ δ0. Hence, in both cases we can
state that

k∑
j=1

σT (fj) ≥ δsp + sp − k ≥ δ0 − k ≥ α0k,

where the equalities hold, if α0 = maxj=0,...,k−1 {αj} > 0.
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2.3. Growth of solutions with respect to maximum modulus. Alongside of the
T -order, we may also define the M -order of growth of f ∈ H(D) by

σM (f) := lim sup
r→1−

log+ log+M(r, f)

− log(1− r)
,

where M(r, f) := max|z|=r |f(z)| is the maximum modulus of f . It is well known that the
inequalities

(2.8) σT (f) ≤ σM (f) ≤ σT (f) + 1

are satisfied for all f ∈ H(D), and all possibilities allowed by (2.8) can be assumed [14,
Theorems 3.5-3.7]. A function f ∈ H(D) is said to belong to the weighted Hardy space
H∞α , if there exists α ≥ 0 such that

sup
z∈D

(1− |z|2)α |f(z)| <∞.

Functions of maximal growth in
⋂
α>pH

∞
α are distinguished by denoting f ∈ H∞p , if

p = inf {α ≥ 0 : f ∈ H∞α }. Remark that H∞0 = H∞ is the space of all bounded analytic
functions in D. The union

⋃
α>0H

∞
α is also known as the Korenblum space A−∞ [11],

and since [3] H∞p is also known as Gp.
If the growth of coefficients is measured by means of maximum modulus estimates then

it is natural to consider the growth of solutions with respect to M -order.

Theorem B ([4, Theorem 1.4]). Suppose that aj ∈ H∞(pj+1)(k−j), where pj ≥ −1 for

j = 0, . . . , k − 1, and denote pk := −1.

(i) Suppose that

(2.9) min
j=1,...,k

{
k(p0 − pj)

j
+ pj

}
> 1,

and let 1 ≤ α < ∞. Then all solutions f of (1.1) satisfy σM (f) ≤ α if and only
if maxj=0,...,k−1 {pj} ≤ α.

(ii) All non-trivial solutions f of (1.1) satisfy σM (f) ≤ maxj=0,...,k−1
{
p+j
}
, and

min
j=1,...,k

{
k(p0 − pj)

j
+ pj

}
≤ max {σM (f), 1} .

(iii) Suppose that (2.9) holds. If q ∈ {0, . . . , k − 1} is the smallest index for which
pq = maxj=0,...,k−1 {pj} then each solution base of (1.1) contains at least k − q
linearly independent solutions f such that σM (f) = pq.

To conclude [4, Eq. (4.17)] in the proof of Theorem B, the inequality [4, Eq. (1.9)],
corresponding to (2.9), must be strict. By a simple modification of the proof of Theorem B,
the assumption (2.9) can be relaxed to

(2.10) max
j=0,...,k−1

{pj} > 1,

which allows us to apply Theorem B(iii) also in the case that there are solutions f satisfying
σM (f) ≤ 1. To see that (2.10) is in fact a weaker assumption than (2.9), we refer to [12,
Example 10], which is further considered in Section 3.2. In this case

min
j=1,...,k

{
k(p0 − pj)

j
+ pj

}
= −4 and max

j=0,...,k−1
{pj} > 1.

Note that by taking j = k in (2.9), we obtain p0 > 1. Hence (2.9) implies (2.10).
Theorem 5 below corresponds to Theorem 1.

Theorem 5. Suppose that aj ∈ H∞(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k − 1,

and let q ∈ {0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1 {pj}. If
s ∈ {0, . . . , q} then each solution base of (1.1) contains at least k− s linearly independent
solutions f such that

(2.11) min
j=s+1,...,k

{
(k − s)(ps − pj)

j − s
+ pj

}
≤ max {σM (f), 1} .
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Note that (2.11) gives information on σM (f) only in the case when the minimum in
(2.11) is strictly greater than 1. The case s = 0 in Theorem 5 reduces to Theorem B(ii),
and the case s = q reduces to Theorem B(iii) with the assumption (2.10), since now

(2.12) min
j=q+1,...,k

{
(k − q)(pq − pj)

j − q
+ pj

}
= pq = max

j=0,...,k−1
{pj} ,

where the minimum is attained for j = k. For a similar argumentation, see (2.2). Our
contribution is to extend (2.11) for s ∈ {1, . . . , q − 1}. The proof of Theorem 5 is sketched
in Section 7, and the sharpness as well as the the special cases k = 2 and k = 3 are further
discussed in Section 3.2.

Let q ∈ {0, . . . , k−1} be the smallest index for which pq = maxj=0,...,k−1{pj}. If pq ≤ 1
then all solutions f in each solution base of (1.1) satisfy σM (f) ≤ 1 by Theorem B(ii).
Suppose that pq > 1. In order to state the following corollaries of Theorem 5, we denote

(2.13) βM (s) := min
j=s+1,...,k

{
(k − s)(ps − pj)

j − s
+ pj

}
, s = 0, . . . , q,

where pk := −1. Moreover, we define

s? := min {s ∈ {0, . . . , q} : βM (s) > 1} .

Remark that βM (q) > 1, since (2.12) implies pq = βM (q).

Corollary 6. Suppose that aj ∈ H∞(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k − 1, and

let q ∈ {0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1 {pj} > 1. Then
each solution base of (1.1) admits at most s? ≤ q solutions f satisfying σM (f) < βM (s?).
In particular, there are at most s? ≤ q solutions f satisfying σM (f) ≤ 1.

To estimate the quantity
∑k
j=1 σM (fj) by using Theorem 5, we set

γM (j) := max{βM (0), . . . , βM (j)}, j = 0, . . . , q.

Evidently γM (j) > 1 for j ∈ {s?, . . . , q}, and γM (j) ≤ 1 for j ∈ {0, . . . , s? − 1}.

Corollary 7. Suppose that aj ∈ H∞(pj+1)(k−j), where pj ≥ −1 for j = 0, . . . , k − 1, and

let q ∈ {0, . . . , k − 1} be the smallest index for which pq = maxj=0,...,k−1{pj} > 1. Let

{f1, . . . , fk} be a solution base of (1.1). If q = 0 then
∑k
j=1 σM (fj) = kp0, while if q ≥ 1

then

(2.14) (k − q)pq +

q−1∑
j=s?

γM (j) ≤
k∑
j=1

σM (fj) ≤ kpq.

Note that the sum in (2.14) is considered to be empty, if s? = q.

2.4. Gunderssen-Steinbart-Wang method for M-order. We proceed to state the
assertions of Theorem 5 and its corollaries by using a technique introduced in [6]. This
yields a natural way to define the possible intervals for M -orders of solutions of (1.1). As
a consequence, we get a useful estimate following from Corollary 7.

Set δj := (pj + 1)(k− j) for all j = 0, . . . , k− 1. Let s1 ∈ {0, . . . , k − 1} be the smallest
index satisfying ps1 = maxj=0,...,k−1 {pj} > 1, which is equivalent to

δs1
k − s1

= max
j=0,...,k−1

{
δj

k − j

}
> 2.

If s1 cannot be found then all solutions f of (1.1) satisfy σM (f) ≤ 1 by Theorem B(ii).
Otherwise, for a given sm, m ∈ N, let sm+1 ∈ {0, . . . , sm − 1} be the smallest index
satisfying

(2.15)
δsm+1

− δsm
sm − sm+1

= max
j=0,...,sm−1

{
δj − δsm
sm − j

}
> 2.
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Eventually this process will stop, yielding a finite list of indices s1, . . . , sp such that p ≤ k
and s1 > s2 > · · · > sp ≥ 0. Further, set

(2.16) BM (t) :=
δst − δst−1

st−1 − st
− 1, t = 1, . . . , p,

where s0 := k and δk := 0. By Example 1 below, it is possible that (1.1) possesses a
solution f of non-zero M -order such that σM (f) 6= BM (t) for all t = 1, . . . , p.

The following lemma, which can be proved similarly than Lemma 4, allows us to view
the results in Section 2.3 in a new perspective.

Lemma 8. We have

(i) BM (1) > BM (2) > · · · > BM (p) > 1;
(ii) βM (st) = BM (t) for all t ∈ {1, . . . , p};
(iii) γM (q) = BM (1), γM (j) = BM (t) for all st ≤ j < st−1 and t ∈ {2, . . . , p}, and

γM (j) ≤ 1 for all j < sp. In particular, sp = s?.

By relying on Lemma 8, Theorem 5 and Corollary 6, we proceed to state possible
intervals for M -orders of functions in solution bases of (1.1) in the case aj ∈ H∞(pj+1)(k−j),

where pj ≥ −1 for j = 0, . . . , k − 1. In fact, each solution base of (1.1) contains

(i) at least k − s1 solutions f satisfying σM (f) = BM (1);
(ii) at least k − st solutions f satisfying σM (f) ∈ [BM (t),BM (1)] for t = 2, . . . , p;
(iii) at most sp solutions f satisfying σM (f) ∈ [0,BM (sp)).

For results of the same type, we refer to [1, Theorem 1] and [2, Corollary 1]. To compare
(i) and (ii) to the estimates given in [2, Corollary 1], note that there is −1 in (2.16) instead
of −2 in [2, Eq. (1.3)]. Evidently, assertions (i) and (ii) improve the estimates given for
the M -orders of solutions in [2, Corollary 1]. Moreover, by means of (2.8) we see that
(i) and (ii) reduce to [2, Corollary 1], if we consider the growth of solutions of (1.1) with
respect to T -order.

For the following application, let {f1, . . . , fk} be a solution base of (1.1). Knowing the
possible intervals for M -orders, we get

(2.17)

k∑
j=1

σM (fj) ≥ (k − s1)BM (1) + · · ·+ (sp−1 − sp)BM (p) + sp · 0 = δsp + sp − k.

Correspondingly to the case in Section 2.2, by means of Lemma 8 we see that the lower
estimates in (2.14) and (2.17) are equal.

Finally, we point out a practical estimate, which is a consequence of (2.17). If sp = 0
then δsp + sp = δ0− sp. If sp > 0 then (δ0− δsp)/sp ≤ 2 by (2.15), and δsp + sp ≥ δ0− sp.
Hence, in both cases we can state that

(2.18)

k∑
j=1

σM (fj) ≥ δ0 − sp − k ≥ p0k − sp.

We conclude that, if s1 = 0 then the equalities hold in (2.18), since in this case sp = s1 = 0.
Note that, if (2.9) holds then we can conclude that sp = 0.

3. Sharpness discussion

3.1. Sharpness of Theorem 1. We may assume that maxj=0,...,k−1 {αj} > 0, for oth-
erwise all solutions are of zero T -order. If k = 2 then the statement of Theorem 1 is
contained in Theorem A, and all the assertions are sharp [12, Examples 3 and 6].

If k = 3 then we have three different cases to consider.

(A1) If α1, α2 ≤ α0 then all nontrivial solutions f of (1.1) satisfy σT (f) = α0. In this
case s = 0 = q.
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(A2) If α0 < α1 and α2 ≤ α1 then in every solution base {f1, f2, f3} of (1.1) there are
at least two solutions f1 and f2 such that σT (fj) = α1 for both j = 1, 2, and all
solutions fj satisfy

(3.1) σT (fj) ≥ min

{
3α0 − 2α1,

3

2
α0 −

1

2
α2, α0

}
, j = 1, 2, 3.

In this case s = 0 or s = 1 = q.
(A3) If α0, α1 < α2 then in every solution base {f1, f2, f3} of (1.1) there is at least one

solution f1 such that σT (f1) = α2, two solutions f1 and f2 such that

σT (fj) ≥ min{2α1 − α2, α1}, j = 1, 2,

and all solutions fj satisfy (3.1). In this case s = 0, s = 1 or s = 2 = q.

It is clear that the assertion in (A1) is sharp, and so are the ones in (A2) by [12,
Example 10]. Moreover, [12, Example 9] shows that the assertions in (A3) are sharp for
s = 0 and s = 2. Example 2 below shows the sharpness of the assertions in (A3) for
s = 0, 1, 2. That is, in all cases there exists a solution for which the lower bound for the
T -order of growth is attained.

3.2. Sharpness of Theorem 5. We may assume that maxj=0,...,k−1 {pj} > 1, for other-
wise all solutions f of (1.1) satisfy max {σM (f), 1} = 1, and we cannot conclude anything
from (2.11). If k = 2 then the statement of Theorem 5 is contained in Theorem B,
and all the assertions are sharp by [12, Examples 3 and 6]. In the case of [12, Ex-
ample 3], for β > 1, linearly independent solutions f1 and f2 satisfy σM (f1) = β and
σM (f2) = β+2. Moreover, aj ∈ H∞(pj+1)(2−j), where p0 = β+1 and p1 = β+2. Note that

max {p0, p1} = p1 = β+2 > 1, and hence q = 1. An easy computation shows the sharpness
for s = 0 and for s = q = 1. In the case of [12, Example 6], for β > 1, linearly independent
solutions f1 and f2 satisfy σM (f1) = β and σM (f2) = β. Moreover, aj ∈ H∞(pj+1)(2−j),

where p0 = β and p1 = −1/2. Note now that max {p0, p1} = p0 = β > 1, and hence
q = 0. This example shows the sharpness for s = q = 0. For another example, see [4,
Example 2].

If k = 3 then we have three different cases to consider.

(B1) If p1, p2 ≤ p0 then s = 0 = q, and all nontrivial solutions f of (1.1) satisfy
σM (f) = p0 by (2.12).

(B2) If p0 < p1 and p2 ≤ p1 then in every solution base {f1, f2, f3} of (1.1) there are
at least two solutions f1 and f2 such that σM (fj) = p1 for both j = 1, 2, and all
solutions fj satisfy

(3.2) max {σM (fj), 1} ≥ min

{
3p0 − 2p1,

3

2
p0 −

1

2
p2, p0

}
, j = 1, 2, 3.

In this case s = 0 or s = 1 = q.
(B3) If p0, p1 < p2 then in every solution base {f1, f2, f3} of (1.1) there is at least one

solution f1 such that σM (f1) = p2, two solutions f1 and f2 such that

max {σM (fj), 1} ≥ min{2p1 − p2, p1}, j = 1, 2,

and all solutions fj satisfy (3.2). In this case s = 0, s = 1 or s = 2 = q.

It is clear that the assertion in (B1) is sharp. By [12, Example 10], we see that the
assertion in (B2) corresponding to s = 1 is sharp. In this case, for β > 1, linearly
independent solutions f1, f2 and f3 satisfy σM (f1) = σM (f2) = β and σM (f3) = 0.
Now aj ∈ H∞(pj+1)(3−j), where p0 = 2

3β, p1 = β + 2, and p2 = 0. Moreover, by [12,

Example 9], we see that the assertions in (B3) are sharp for s = 0 and s = 2. In this
case for β > 1, linearly independent solutions f1, f2 and f3 satisfy σM (f1) = σM (f2) = β
and σM (f3) = 2β. Moreover, aj ∈ H∞(pj+1)(3−j), where p0 = 4

3β, p1 = β, and p2 = 2β.

Example 2 below shows the sharpness of the assertions in (B3) for s = 0, 1, 2. That is, in
all cases there exists a solution for which equality holds in (2.11).
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3.3. Examples. Example 1 below shows that a unit disc counterpart of the finite set
constructed by Gundersen-Steinbart-Wang does not contain growth orders of solutions of

(3.3) f ′′ + a1(z)f ′ + a0(z)f = 0,

if coefficients belong either to weighted Bergman spaces or to weighted Hardy spaces.

Example 1. Let α, β ∈ R be constants satisfying 1 < β < α < 2β−1. Then the functions

f1(z) = (1− z)α+β exp

((
1

1− z

)α
+

(
1

1 + z

)β)
,

f2(z) = (1− z)α+β exp

(
1

1 + z

)β
are linearly independent analytic solutions of (3.3), where

a0(z) =
β2

(1 + z)2+2β
+
β(α+ 3β)(γ + z)

(1− z)(1 + z)2+β
− α(α+ β)

(1− z)2+α

− αβ

(1− z)1+α(1 + z)1+β
+
β(α+ β)

(1− z)2
,

a1(z) =
2β

(1 + z)1+β
− α

(1− z)1+α
+
α+ 2β − 1

1− z
belong to H(D), and γ = (α+ β − 2)/(α+ 3β) ∈ (0, 1/2).

It is clear that aj ∈ A
1

2−j
αj , where α0 = β− 1 and α1 = α− 1. We calculate that s1 = 1,

s2 = 0, BT (1) = α − 1 and BT (2) = 2β − α − 1. Hence [2β − α − 1, α − 1] is the only
possible interval for T -orders of solutions of (3.3). Since σT (f2) = β−1, we conclude that
the T -order of a solution does not have to be one of the endpoints.

On the other hand, it is also clear that aj ∈ H∞(pj+1)(2−j), where p0 = β and p1 = α.

We calculate that s1 = 1, s2 = 0, BM (1) = α and BM (2) = 2β − α. Hence [2β − α, α]
is the only possible interval for M -orders of solutions of (3.3). Since σM (f2) = β, we
conclude that the M -order of a solution does not have to be one of the endpoints.

The following example demonstrates the sharpness of Theorems 1 and 5 in the case
that they do not reduce to known results.

Example 2. Let β > 1, and denote g(z) = (5/(1− z))β . Then the functions

fj(z) = (1− z)β exp
(
g(z)j

)
, j = 1, 2, 3,

are linearly independent solutions of f ′′′ + a2(z)f ′′ + a1(z)f ′ + a0(z)f = 0, where

a2(z) =
P2(g(z))

(1− z)Q(g(z))
, a1(z) =

P1(g(z))

(1− z)2Q(g(z))
, a0(z) =

β3P0(g(z))

(1− z)3Q(g(z))
,

are such that

P2(ζ) = 54βζ8 − 27βζ7 − 24βζ6 + (108β + 54)ζ5 − (82β + 63)ζ4 + 3βζ3

+ (22β + 39)ζ2 − (6β + 24)ζ + 6,

P1(ζ) = −108β2ζ10 + 72β2ζ9 + (27β2 − 54β)ζ8 + (27β − 135β2)ζ7

+ (24β + 15β2)ζ6 + (64β2 − 108β − 18)ζ5 + (21 + 82β − 51β2)ζ4

− (3β + 15β2)ζ3 + (31β2 − 22β − 13)ζ2 + (8 + 6β − 14β2)ζ + 2β2 − 2,

P0(ζ) = 108ζ11 − 234ζ10 + 126ζ9 + 123ζ8 − 276ζ7 + 183ζ6 − 104ζ5 + 40ζ4

− 6ζ3 − 4ζ2,

Q(ζ) = −18ζ5 + 21ζ4 − 13ζ2 + 8ζ − 2.

The zeros of Q(ζ) lie in the open disc of radius 1 + 21
18 centered at the origin by [13,

Lemma 1.3.2]. Since |g(z)| > |5/(1− z)| > 5
2 > 39

18 for all z ∈ D, we conclude that
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a0, a1, a2 ∈ H(D). In fact, the coefficients a0, a1, a2 satisfy

a2(z) ∼
(

1

1− z

)3β+1

, a1(z) ∼
(

1

1− z

)5β+2

, a0(z) ∼
(

1

1− z

)6β+3

,

in a neighborhood of z = 1, while they are bounded in a neighborhood of any boundary
point in ∂D \ {1}.

Note that aj ∈ A
1

3−j
αj , where α2 = 3β − 1, α1 = 5

2β − 1 and α0 = 2β − 1. Evidently
σT (fj) = βj − 1 for j = 1, 2, 3. We deduce that there is one solution f3 such that
σT (f3) = α2 = 3β − 1, two solutions f2 and f3 such that

σT (f3) > σT (f2) = min{2α1 − α2, α1} = 2β − 1,

and three solutions f1, f2 and f3 such that

σT (f3) > σT (f2) > σT (f1) = min

{
3α0 − 2α1,

3

2
α0 −

1

2
α2, α0

}
= β − 1.

That is, in all cases s = 0, 1, 2 there exists a solution for which the lower bound in (2.1) is
attained. Further, this example is in line with Corollary 2, since all solutions f1, f2 and
f3 are of strictly positive T -order, and in this case s∗ = 0.

Now γT (0) = βT (0) = β − 1, γT (1) = βT (1) = 2β − 1 and γT (2) = βT (2) = 3β − 1. It
follows that for the solution base {f1, f2, f3} equality holds in the first inequality in (2.4),
and for the solution base {f1 +f3, f2 +f3, f3} equality holds in the last inequality in (2.4).
This shows the sharpness of Corollary 3.

On the other hand, aj ∈ H∞(pj+1)(3−j), where p2 = 3β, p1 = 5β
2 and p0 = 2β. Evidently

σM (fj) = βj for j = 1, 2, 3. We deduce that there is one solution f3 such that σM (f3) =
p2 = 3β > 1, two solutions f2 and f3 such that

σM (f3) > σM (f2) = min{2p1 − p2, p1} = 2β > 1,

and three solutions f1, f2 and f3 such that

σM (f3) > σM (f2) > σM (f1) = min

{
3p0 − 2p1,

3

2
p0 −

1

2
p2, p0

}
= β.

That is, in all cases s = 0, 1, 2 there exists a solution for which the lower bound in (2.11)
is attained. Further, this example is in line with Corollary 6, since all solutions f1, f2 and
f3 are of M -order strictly greater than 1, and in this case s? = 0.

Now γM (0) = βM (0) = β, γM (1) = βM (1) = 2β and γM (2) = βM (2) = 3β. It follows
that for the solution base {f1, f2, f3} equality holds in (2.14), and for the solution base
{f1 + f3, f2 + f3, f3} upper bound for the sum of M -orders is attained. This shows the
sharpness of Corollary 7.

4. Proof of Theorem 1

The following lemma on the order reduction procedure originates from C.

Lemma C ([6, Lemma 6.4]). Let f0,1, f0,2, . . . , f0,m be m ≥ 2 linearly independent
meromorphic solutions of

y(k) + a0,k−1(z) y(k−1) + · · ·+ a0,0(z) y = 0, k ≥ m,
where a0,0(z), . . . , a0,k−1(z) are meromorphic functions in D. For 1 ≤ p ≤ m− 1, set

fp,j =

(
fp−1,j+1

fp−1,1

)′
, j = 1, . . . ,m− p.

Then fp,1, fp,2, . . . , fp,m−p are linearly independent meromorphic solutions of

y(k−p) + ap,k−p−1(z) y(k−p−1) + · · ·+ ap,0(z) y = 0,

where

ap,j(z) =

k−p+1∑
n=j+1

(
n

j + 1

)
ap−1,n(z)

f
(n−j−1)
p−1,1 (z)

fp−1,1(z)
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for j = 0, . . . , k − p− 1. Here an,k−n(z) ≡ 1 for all n = 0, . . . , p.

Lemma D ([10, Theorem E(b)]). Let k and j be integers satisfying k > j ≥ 0, and let
ε > 0. If f is meromorphic in D such that σT (f) <∞, and f (j) 6≡ 0, then∫

D

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣
1
k−j

(1− |z|)σT (f)+ε dm(z) <∞.

4.1. Case s = 1. Let k ≥ 3, q ≥ 2, s = 1 and βT (1) > 0, since otherwise there is nothing
to prove. In particular, if α1 ≤ 0 then (2.1) is trivial, since by taking j = k in (2.3), we
obtain βT (1) ≤ α1 ≤ 0. Let {f0,1, f0,2, . . . , f0,k} be a solution base of (1.1), and assume
on the contrary to the assertion that there exist s+ 1 = 2 linearly independent solutions
f0,1 and f0,2 such that max{σT (f0,1), σT (f0,2)} =: σ < βT (1). Then the meromorphic
function g := (f0,1/f0,2)′ satisfies σT (g) ≤ σ. Moreover, Lemma C implies that g satisfies

(4.1) g(k−1) + a1,k−2(z) g(k−2) + · · ·+ a1,0(z) g = 0,

where

(4.2) a1,j(z) = a0,j+1(z) +

k∑
n=j+2

(
n

j + 1

)
a0,n(z)

f
(n−j−1)
0,1 (z)

f0,1(z)

for j = 0, 1, . . . , k − 2, and a0,k(z) ≡ 1. Therefore

|a0,1(z)| ≤ |a1,0(z)|+
k∑

n=2

(
n

1

)
|a0,n(z)|

∣∣∣∣∣f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣ ,
where

|a1,0(z)| ≤
∣∣∣∣g(k−1)(z)g(z)

∣∣∣∣+ |a1,k−2(z)|
∣∣∣∣g(k−2)(z)g(z)

∣∣∣∣+ · · ·+ |a1,1(z)|
∣∣∣∣g′(z)g(z)

∣∣∣∣ ,
since g satisfies (4.1). Putting the last two inequalities together, we obtain

|a0,1(z)| .
k−1∑
j=1

|a1,j(z)|
∣∣∣∣g(j)(z)g(z)

∣∣∣∣+

k∑
n=2

|a0,n(z)|

∣∣∣∣∣f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣ .
Let ε > 0. Raising both sides to the power 1/(k− 1) and integrating over the disc D(0, r)
of radius r ∈ (0, 1) with respect to (1− |z|2)α1−ε dm(z), we obtain∫

D(0,r)

|a0,1(z)|
1
k−1 (1− |z|2)α1−ε dm(z)

.
k−1∑
j=1

∫
D
|a1,j(z)|

1
k−1

∣∣∣∣g(j)(z)g(z)

∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z)

+

k∑
n=2

∫
D
|a0,n(z)|

1
k−1

∣∣∣∣∣f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z).

(4.3)

To deal with the second sum in (4.3), consider

In :=

∫
D
|a0,n(z)|

1
k−1

∣∣∣∣∣f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z), n = 2, . . . , k.

By Lemma D,

Ik =

∫
D

∣∣∣∣∣f
(k−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z) <∞
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for ε > 0 small enough since σT (f0,1) ≤ σ < βT (1) ≤ α1. Moreover, by Hölder’s inequality,

with indices k−1
k−n and k−1

n−1 , we have

In ≤
(∫

D
|a0,n(z)|

1
k−n (1− |z|2)αn+ε dm(z)

) k−n
k−1

·

∫
D

∣∣∣∣∣f
(n−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1

n−1

(1− |z|2)ω1(n) dm(z)


n−1
k−1

for all n = 2, . . . , k − 1, where

(4.4) ωs(n) :=
(k − s)(αs − αn)

n− s
+ αn −

2k − n− s
n− s

ε.

The first member in the product is finite since a0,n ∈ A
1

k−n
αn for all n = 2, . . . , k− 1 by the

assumption, and so is the second one for ε > 0 small enough since

σT (f0,1) ≤ σ < βT (1) ≤ (k − 1)(α1 − αn)

n− 1
+ αn, n = 2, . . . , k − 1,

by the antithesis. Thus
∑k
n=2 In is finite for ε > 0 small enough.

To deal with the first sum in (4.3), denote

Jj :=

∫
D
|a1,j(z)|

1
k−1

∣∣∣∣g(j)(z)g(z)

∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z), j = 1, . . . , k − 1.

Lemma D implies that

Jk−1 =

∫
D

∣∣∣∣g(k−1)(z)g(z)

∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z) <∞

for ε > 0 small enough since σT (g) ≤ σ < βT (1) ≤ α1. Moreover, by (4.2) we have

Jj .
∫
D
|a0,j+1(z)|

1
k−1

∣∣∣∣g(j)(z)g(z)

∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z)

+

k∑
n=j+2

∫
D
|a0,n(z)|

1
k−1

∣∣∣∣∣f
(n−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1
k−1 ∣∣∣∣g(j)(z)g(z)

∣∣∣∣
1
k−1

(1− |z|2)α1−ε dm(z)

=: Kj + Lj,k +

k−1∑
n=j+2

Lj,n

for all j = 1, . . . , k − 2. Since max{σT (g), σT (f0,1)} ≤ σ < βT (1), we deduce that Kj

behaves like Ij+1 and hence
∑k−2
j=1 Kj <∞ for ε > 0 small enough. Moreover, by Hölder’s

inequality, with indices k−1
k−j−1 and k−1

j , and Lemma D we have

Lj,k ≤

∫
D

∣∣∣∣∣f
(k−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1

k−j−1

(1− |z|2)α1−ε dm(z)


k−j−1
k−1

·

(∫
D

∣∣∣∣g(j)(z)g(z)

∣∣∣∣
1
j

(1− |z|2)α1−ε dm(z)

) j
k−1

<∞
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for all j = 1, . . . , k − 2 when ε > 0 is sufficiently small. It remains to consider the double

sum
∑k−3
j=1

∑k−1
n=j+2 Lj,n. By Hölder’s inequality, with indices k−1

k−n and k−1
n−1 , we have

Lj,n ≤
(∫

D
|a0,n(z)|

1
k−n (1− |z|2)αn+ε dm(z)

) k−n
k−1

·

(∫
D

∣∣∣∣∣f
(n−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1

n−1 ∣∣∣∣g(j)(z)g(z)

∣∣∣∣
1

n−1

(1− |z|2)ω1(n) dm(z)

)n−1
k−1

,

where ω1(n) is defined in (4.4). The first term in the product is bounded for all ε > 0 since

a0,n ∈ A
1

k−n
αn for all n = 3, . . . , k− 1 by the assumption. One more application of Hölder’s

inequality, with indices n−1
n−j−1 and n−1

j , together with Lemma D and the antithesis shows

that also the second term in the product is bounded for ε > 0 small enough, and thus∑k−3
j=1

∑k−1
n=j+2 Lj,n <∞ for ε > 0 small enough.

We have proved that the right-hand side of (4.3) is uniformly bounded for all r ∈ (0, 1),

if ε > 0 is small enough. However, a0,1 ∈ A
1
k−1
α1 by the assumption, and hence the left-hand

side of (4.3) diverges as r → 1−. Contradiction follows.

4.2. Case s > 1. Let k ≥ 3, q ≥ 2, s > 1 and βT (s) > 0, since otherwise there is nothing
to prove. In particular, it follows that αs > 0. Let {f0,1, f0,2, . . . , f0,k} be a solution
base of (1.1), and assume on the contrary to the assertion that there exist s+ 1 linearly
independent solutions f0,1, . . . , f0,s+1 such that

σ := max{σT (f0,1), . . . , σT (f0,s+1)} < βT (s).

Then the meromorphic functions f1,j = (f0,j+1/f0,1)′ satisfy σT (f1,j) ≤ σ for all j =
1, . . . , s. This in turn implies that f2,j = (f1,j+1/f1,1)′ satisfy σT (f2,j) ≤ σ for all j =
1, . . . , s−1. In general, σT (fn,j) ≤ σ for all j = 1, . . . , s−n+1 and n = 1, . . . , s. Moreover,
as in the case s = 1, Lemma C implies

|a0,s(z)| ≤ |a1,s−1(z)|+
k∑

n=s+1

(
n

s

)
|a0,n(z)|

∣∣∣∣∣f
(n−s)
0,1 (z)

f0,1(z)

∣∣∣∣∣
≤ |a2,s−2(z)|+

k−1∑
n=s

(
n

s− 1

)
|a1,n(z)|

∣∣∣∣∣f
(n−s+1)
1,1 (z)

f1,1(z)

∣∣∣∣∣
+

k∑
n=s+1

(
n

s

)
|a0,n(z)|

∣∣∣∣∣f
(n−s)
0,1 (z)

f0,1(z)

∣∣∣∣∣
≤ · · ·

≤ |as,0(z)|+
s−1∑
m=0

k−m∑
n=s+1−m

(
n

s−m

)
|am,n(z)|

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣ ,
where

|as,0(z)| ≤

∣∣∣∣∣f
(k−s)
s,1 (z)

fs,1(z)

∣∣∣∣∣+

k−s−1∑
m=1

|as,m(z)|

∣∣∣∣∣f
(m)
s,1 (z)

fs,1(z)

∣∣∣∣∣ .
Putting these inequalities together, we obtain

|a0,s(z)| .
s∑

m=0

k−m−1∑
n=s+1−m

|am,n(z)|

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣+

s∑
m=0

∣∣∣∣∣f
(k−s)
m,1 (z)

fm,1(z)

∣∣∣∣∣ .
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Let ε > 0. Raising both sides to the power 1/(k− s) and integrating over the disc D(0, r)
with respect to (1− |z|2)αs−ε dm(z), we obtain∫

D(0,r)

|a0,s(z)|
1
k−s (1− |z|2)αs−ε dm(z)

.
s∑

m=0

k−m−1∑
n=s+1−m

∫
D
|am,n(z)|

1
k−s

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣
1
k−s

(1− |z|2)αs−ε dm(z)

+

s∑
m=0

∫
D

∣∣∣∣∣f
(k−s)
m,1 (z)

fm,1(z)

∣∣∣∣∣
1
k−s

(1− |z|2)αs−ε dm(z)

=:

s∑
m=0

k−m−1∑
n=s+1−m

Im,n +

s∑
m=0

Jm.(4.5)

Lemma D and the antithesis imply that
∑s
m=0 Jm < ∞ for ε > 0 small enough. Hence,

in order to obtain a contradiction with (4.5) and the assumption a0,s ∈ A
1
k−s
αs , it suffices

to show that Im,n <∞ for all m = 0, . . . , s and n = s+ 1−m, . . . , k−m− 1 when ε > 0
is sufficiently small.

By Hölder’s inequality, with indices k−s
k−n and k−s

n−s , we have

I0,n ≤
(∫

D
|a0,n(z)|

1
k−n (1− |z|2)αn+ε dm(z)

) k−n
k−s

·

∫
D

∣∣∣∣∣f
(n−s)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1

n−s

(1− |z|2)ωs(n) dm(z)


n−s
k−s

for all n = s + 1, . . . , k − 1, where ωs(n) is defined in (4.4). The first member in the

product is finite since a0,n ∈ A
1

k−n
αn for all n = s+ 1, . . . , k − 1 by the assumption, and so

is the second one for ε > 0 small enough, since

σT (f0,1) ≤ σ < βT (s) ≤ (k − s)(αs − αn)

n− s
+ αn, n = s+ 1, . . . , k − 1,

by the antithesis. In the general case Lemma C gives

Im,n =

∫
D
|am,n(z)|

1
k−s

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣
1
k−s

(1− |z|2)αs−ε dm(z)

.
k−m+1∑
n1=n+1

∫
D
|am−1,n1(z)|

1
k−s

∣∣∣∣∣f
(n1−n−1)
m−1,1 (z)

fm−1,1(z)

∣∣∣∣∣
1
k−s

·

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣
1
k−s

(1− |z|2)αs−ε dm(z)

.
k−m+1∑
n1=n+1

k−m+2∑
n2=n1+1

∫
D
|am−2,n2(z)|

1
k−s

∣∣∣∣∣f
(n2−n1−1)
m−2,1 (z)

fm−2,1(z)

∣∣∣∣∣
1
k−s

·

∣∣∣∣∣f
(n1−n−1)
m−1,1 (z)

fm−1,1(z)

∣∣∣∣∣
1
k−s

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣
1
k−s

(1− |z|2)αs−ε dm(z),

and finally

Im,n .
k−m+1∑
n1=n+1

k−m+2∑
n2=n1+1

· · ·
k∑

nm=nm−1+1

K(n, n1, . . . , nm),
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where

K(n, n1, . . . , nm) :=

∫
D
|a0,nm(z)|

1
k−s

∣∣∣∣∣f
(nm−nm−1−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣
1
k−s

· · ·

∣∣∣∣∣f
(n2−n1−1)
m−2,1 (z)

fm−2,1(z)

∣∣∣∣∣
1
k−s

·

∣∣∣∣∣f
(n1−n−1)
m−1,1 (z)

fm−1,1(z)

∣∣∣∣∣
1
k−s

∣∣∣∣∣f
(n−s+m)
m,1 (z)

fm,1(z)

∣∣∣∣∣
1
k−s

(1− |z|2)αs−ε dm(z).

If nm = k then a0,nm(z) ≡ 1, and general form of Hölder’s inequality with indices

(4.6)
nm − s

nm − nm−1 − 1
,

nm − s
nm−1 − nm−2 − 1

, . . . ,
nm − s

n1 − n− 1
,

nm − s
n− s+m

,

together with Lemma D shows that K(n, n1, . . . , nm) < ∞ for ε > 0 small enough.
If nm < k then an appropriate application of Hölder’s inequality with indices k−s

k−nm
and k−s

nm−s separates the coefficient from the solutions. The first term is finite by the
assumption, and the second term can seen to be finite by another application of general
form of Hölder’s inequality with indices (4.6). This gives the desired contradiction, since
the left-hand side of (4.5) diverges as r → 1− and the right-hand side of (4.5) is uniformly
bounded for all r ∈ (0, 1).

5. Proof of Corollary 3

The upper bound in (2.4) follows directly from Theorem 1. To conclude the lower
bound in (2.4), assume that solutions f1, . . . , fk are given in increasing order with respect
to T -order of growth; that is, σT (f1) ≤ · · · ≤ σT (fk). By applying Theorem 1 with
s = 0, . . . , q, we get the following sequence of successive statements. For all solutions
f in the solution base, we have βT (0) ≤ σT (f); for k − 1 solutions f in the solution
base, we have βT (1) ≤ σT (f); ending up with with the fact that k − q solutions f in
the solution base satisfy αq = βT (q) = σT (f). Hence we have γT (0) = βT (0) ≤ σT (f1),
γT (1) = max {βT (0), βT (1)} ≤ σT (f2) continuing to

γT (q − 1) = max {βT (0), . . . , βT (q − 1)} ≤ σT (fq).

Note that αq = γT (q). To see this, note that βT (s) ≤ αs for every s = 0, . . . , q, which
follows by taking j = k in (2.3), and hence

(5.1) αq = βT (q) ≤ γT (q) = max {βT (0), . . . , βT (q)} ≤ max {α0, . . . , αq} = αq.

The assertion follows by noting that, if j ∈ {0, . . . , s? − 1} then γT (j) ≤ 0, and we only
have the trivial estimate σT (fj) ≥ 0.

6. Proof of Lemma 4

Let m ∈ {1, . . . , p}. By (2.5), we obtain

(6.1)
δj − δsm−1

sm−1 − j
≤
δsm − δsm−1

sm−1 − sm
for all 0 ≤ j < sm−1, and the inequality (6.1) is strict for all 0 ≤ j < sm. This estimate
will be repeatedly needed later on.

6.1. Proof of Lemma 4(i). Let 1 ≤ t ≤ p− 1. Note that BT (t) > 0 by definition. Since
st+1 < st,

BT (t)− BT (t+ 1) =
δst − δst−1

st−1 − st
−
δst+1

− δst
st − st+1

=
st−1 − st+1

st − st+1

(
δst − δst−1

st−1 − st
−
δst+1

− δst−1

st−1 − st+1

)
> 0

by (6.1), which proves the assertion of Lemma 4(i).
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6.2. Proof of Lemma 4(ii). Since maxj=0,...,k−1 {αj} = αs1 > 0, we get

βT (s1) = min
j=s1+1,...,k

{
k − j
j − s1

(αs1 − αj) + αs1

}
= αs1 =

δs1
k − s1

− 1 = BT (1),

where the minimum is obtained with j = k. This proves the claim for t = 1.
Assume that t ∈ {2, . . . , p}. To prove the claim, we need the following observations. If

m ∈ {1, . . . , t− 1} then by (6.1) we get

(6.2)
δst − δsm−1

sm−1 − st
− δst − δsm

sm − st
=
sm−1 − sm
sm − st

(
δsm − δsm−1

sm−1 − sm
−
δst − δsm−1

sm−1 − st

)
> 0.

On the other hand, if m ∈ {1, . . . , t} then

(6.3)
δsm − δj
j − sm

≥
δsm − δsm−1

sm−1 − sm
for all sm < j ≤ sm−1. To verify (6.3), we consider the following two cases. If j = sm−1
then the equality in (6.3) holds. If j < sm−1 then by using (6.1), we obtain

δsm − δj
j − sm

=
δsm − δsm−1

j − sm
−
δj − δsm−1

sm−1 − j
sm−1 − j
j − sm

≥
δsm − δsm−1

j − sm
−
δsm − δsm−1

sm−1 − sm
sm−1 − j
j − sm

=
δsm − δsm−1

sm−1 − sm
,

which proves (6.3).
To complete the proof of

(6.4) βT (st) = min
j=st+1,...,k

{
δst − δj
j − st

− 1

}
=
δst − δst−1

st−1 − st
− 1 = BT (t),

we argue as follows. First, we show that βT (st) ≥ BT (t). If st < j ≤ st−1 then (6.3) holds
for m = t. If j > st−1 then let m ∈ {1, . . . , t− 1} be the smallest index such that sm < j.
From (6.1), (6.2) and (6.3), we obtain

δst − δj
j − st

− δst − δsm
sm − st

=
j − sm
j − st

(
δsm − δj
j − sm

− δst − δsm
sm − st

)
>
j − sm
j − st

(
δsm − δsm−1

sm−1 − sm
−
δst − δsm−1

sm−1 − st

)
> 0,

which together with (6.2) shows that

δst − δj
j − st

>
δst − δsm
sm − st

> · · · >
δst − δst−1

st−1 − st
.

Second, we note that equality in (6.4) follows by taking j = st−1.

6.3. Proof of Lemma 4(iii). Since αs1 = maxj=0,...,k−1 {αj} > 0 and s1 = q, we get by
means of (5.1) that

BT (1) =
δq

k − q
− 1 = αq = γT (q).

Let t ∈ {2, . . . , p}. We proceed to prove that γT (j) = BT (t) for all st ≤ j < st−1.
Evidently, γT (j) = max {βT (0), . . . , βT (j)} ≥ βT (st). By Lemma 4(ii), we conclude that
γT (j) ≥ BT (t). To prove that γT (j) ≤ BT (t), it is enough to show that βT (m) ≤ BT (t)
for all m ∈ {0, . . . , j}. Since m+ 1 ≤ st−1, we obtain by appealing to (6.1) that

βT (m) = min
j=m+1,...,k

{
δm − δj
j −m

− 1

}
≤
δm − δst−1

st−1 −m
− 1 ≤

δst − δst−1

st−1 − st
− 1 = BT (t).

If sp > 0 then for all m ∈ {0, . . . , sp − 1} we have

βT (m) = min
j=m+1,...,k

{
δm − δj
j −m

− 1

}
≤
δm − δsp
sp −m

− 1 ≤ 0

by (2.5). Hence γT (j) = max {βT (0), . . . , βT (j)} ≤ 0 for all j < sp. As a consequence we
see that sp = s?.
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7. Proof of Theorem 5

Our proof of Theorem 5 is parallel to the proof of [4, Theorem 1.4], and hence we only
outline the argumentation. We may assume that k ≥ 3, q ≥ 2, s ∈ {1, . . . , q − 1} and
βM (s) > 1 for otherwise there is nothing to prove by Theorem B, see the discussion after
Theorem 5. In particular, if ps ≤ 1 then (2.11) is trivial, since by taking j = k in (2.13),
we obtain βM (s) ≤ ps ≤ 1. On the contrary to the claim, assume that (1.1) admits s+ 1
linearly independent solutions f0,1, . . . , f0,s+1 such that

σM (f0,t) < α := βM (s), t = 1, . . . , s+ 1.

Remark that, if α ≤ 1 then there is nothing to prove in (2.11), so we may assume that
α > 1. Now max {β, 1} < α, where β := maxt=1,...,s+1 {σM (f0,t)} <∞.

Let ε, δ ∈ (0, 1). Now [4, Lemma 4.3] for m = s+ 1 implies that there exists a solution
fs,1 6≡ 0 of

(7.1) f (k−s) + as,k−s−1(z)f (k−s−1) + · · ·+ as,1(z)f ′ + as,0(z)f = 0

of the from fs,1 = gs,1/hs,1, where gs,1, hs,1 ∈ H(D) and

max {σM (gs,1), σM (hs,1)} ≤ max {β, 1} < α.

It is easy to see that α = βM (s) yields (k−l)pl ≤ (k−s)ps−(l−s)α for all l ∈ {s+ 1, . . . , k}.
Hence, by [4, Lemma 4.3] and the assumption a0,j ∈ H∞(pj+1)(k−j), we get

M(r, as,j) ≤
(

1

1− r

)(ps+1)(k−s)−j(α+1)+ε

, j = 1, . . . , k − s− 1,

for all r ∈ [0, 1) \ E, where the set E satisfies the upper density condition

(7.2) D(E) := lim sup
r→1−

m(E ∩ [r, 1))

1− r
≤ δ < 1.

Here m(Ω) is the Lebesque measure of the set Ω. We note that set E may not be the
same at each occurrence, however, it always satisfies (7.2).

Let η ∈ (δ, 1). If we apply [4, Lemma 4.4], and use [4, Lemma 4.1] for the coefficient
a0,s ∈ H∞(ps+1)(k−s), we conclude that for ε > 0 small enough, we have

(7.3) M(r, as,0) &

(
1

1− r

)(ps+1)(k−s)−ε

for all r ∈ F \ E, where the set F ⊂ [0, 1) satisfies D(F ) ≥ η. In particular, we have
D(F \ E) ≥ η − δ > 0.

On the other hand, by substituting f = fs,1 in (7.1) and by applying [4, Corollary 4.2]
to fs,1, it follows that

(7.4) |as,0(z)| ≤

∣∣∣∣∣f
(k−s)
s,1 (z)

fs,1(z)

∣∣∣∣∣+

k−s−1∑
j=1

|as,j(z)|

∣∣∣∣∣f
(j)
s,1 (z)

fs,1(z)

∣∣∣∣∣ .
(

1

1− |z|

)(ps+1)(k−s)−2ε

for all z ∈ D, |z| /∈ E. By comparing (7.3) to (7.4), we get a contradictory inequality

(ps + 1)(k − s)− ε ≤ (ps + 1)(k − s)− 2ε.

This shows that each solution base of (1.1) contains at least k − s solutions f satisfying
σM (f) ≥ βM (s).
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